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On the basis of the structural-continuum concept, rheological equations of state have been de-
rived for weak polymer solutions with rigid ellipsoidal macromolecules in an electric field,

The rheological equations of state for weak polymer golutions in an electric field will be derived on
the basis of the structural-continuum concept [1], In this method of analysis one begins with the rheolog-
ical equations of state containing a set of phenomenological parameters which characterize the substructure
behavior (orientation, deformation, internal interaction) [2-6], and then interprets the rheological functions
and the rheological constants in these equations on the basis of experimental flow curves or by the struc-
tural theory of internal viscosity in the given kind of medium,

We will congider the flow on an incompressible continuous medium whose particles have at every
point a definite orientation, This orientation will be characterized by a vector n;. An electric field with
the intensity E; is superposed on this flow. We will assume that at every point in the stream the stress
tensor t;; is a function of the strain rate dij- of the orientation vector nj, and of the electric field intensity
E; at that point:
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Following now Ericksen [2], we congider ;11 —wjjny a function of the same variables as tij’
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Considering only the case where tij and h; are linear functions of dij» Ej, and E;E;, we have then
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where Ag., Ajikms eees B, are tensors transversally isotropic with respect to vector ny.

versal notation for such tensor functions [7], we obtain
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The rheological functions in (1) and (2) depend on njn;. When the modulus of vector n; is invariable, there
will be no loss of generality in letting ngn; = 1. Then njh; = 0 and Eq. (2) simplifies to

hi —_ (‘)ijnj =M\ (diknk — dhmnh’imni). + ()\'1 - KznhEh) (El - nhEhni)' (3)

Relations (1) and (2) can be used for deriving the rheological equations of state for fluids with an
asymmetric deformable substructure (Egs. (1), (2)) or a nondeformable substructure (Egs, (1), (3)) mov-
ing in an electric field. Relations approaching (1) and (3) have been obtained by Ericksen [8] under the
assumption that the electric field affects the stress tensor only insofar as the orientation varies,
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We will now congider a weak solution of a polymer with rigid macromolecules in a dielectric New~
tonian fluid to which an electric field is applied. The macromolecules will be simulated by dielectric el-
lipsoids of revolution with a constant dipole moment along the symmetry axis, As a consequence of the hy-
dromechanical forces and the electric field, the motion of such a suspended macromolecule will combine
translation with compound revolutions, We will characterize the orientation of the macromolecule by a unit
vector Nj aligned in the direction of the constant dipole moment, The motion of a dielectric ellipsoid with
a congtant dipole moment in a simple shear flow

v,=0v,=0, v,=Kx, K=-const (4
in the presence of an electric field with the intensity
E . =E, E,=E =90 (5)

has been analyzed by Ikeda [9], showing that the angular velocity components of vector Nj are
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For an ellipsoid with the equivalent radius r = 3vab? <107 m (the solvent is water) the orientation depends
also on the rotational Brownian movement and is characterized by the distribution function F(p, 6) of vec-
tor N; positions, following the equation of steady state in [10]:

D,AF = div (Fa). (8)

In order to obtain the rheological equations of state for our particular kind of medium, we use Egs.
(1), (8). For a simple shear flow (4) in an electric field (5), the orientation equation (3) coincides with
Egs. (6), (7) if nj = Nj and

AR by =L, g, = LaTh)
3 i

Using the results in [11, 12], one can show that the angular velocity of vector Nj in an arbitrary flow and in
an arbitrary electric field is described by Eq. (3) when condition (9) is satisfied,

(9

We will let Eq. (1) be the rheological equation of state for our particular kind of medium, averaged
through the distribution function of orientation vector positions according to (8) and (3):
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In order to determine the rheological constants in Eq. (10), we will compare the effective viscosity
obtained from (1) for a simple shear flow (4) in an electric field E; =Ecosa, Ey =Esihha, E; =0
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with the effective viscosity obtained for our particular case on the basis of the structural concept:

) : ) a—b D, . -
uﬁ%(l +W) T ey p o, K mReSO>
+ C[xrh — 2 < sin? 2¢ sin*6 >

Mo ope 2P0 By~ By(@ + 5) eI~
@ 2 1y 3DE
Ly | — — | <sin?0> +
i (ﬁo (@®--8°) by ) 8nab?K <l

4 EV (X, —%,) cos (¢ — o) sin 0] [R sin 2¢ cos (¢ — o) sin®9 -

——Rsiﬁ(tp 4 ) sin 8 - sin (¢ — &) sin 6] >. (12)
Relation (12) represents a generalization of results obtained by Mason [14] for the special case without
Brownian mov'?ment (q = 0), the Brownian movement has been accounted for in (12) according to Saito [15],
and g, @y @9, Bgs Bps Ao have been determined in [13]. From (11) and (12) we obtain the following ex-
.pression for the rheological constants:
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Expressions (13)-(17) have been derived in [1] and they define the stress tensor at |E|l =0, We note that in
the general case, at |E| # 0 this tensor is asymmetric.

If the macromolecule is sufficiently large, r = 3/ab® > 107 m, then the Brownian movement may be’
disregarded [10] and, according to [1],

My = 0, (21

with the orientation determined only by Eq. (3), which has steady-state solutions when d;; and E; are in
some definite relations with one another [16], In this case Eq. (10), with the aid of (21) and the stationary
condition n; =0, will be turned into

by = —pbi; -~ 2ud;; + oyt - 2ua(dymn; + digngn;)

(0] a? - b?
+ g oMy — Oymn, = R (dgnn; —dymn;)
ab®  aa, - b,
+ R(opmn; -+ ogmn;) + Ry, + dymn,) — 2Ry, mnnngl (22)

The effective viscosity based on Eq. (22) for a simple shear flow (4) in an electric field (5) coincides with
that obtained by Chaffey and Mason [17].

NOTATION

tjj  is the stress tensor;

6jj  isthe Kronecker delta;

P is the isotropic pressure;

djj  is the strain rate tensor;

wij is the velocity vortex tensor;
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ng is the orientation vector;

Bog Bgyaees fiygy
Yy V4s...5 ¥y  are the rheological functions;

As Me A are the rheological constants;
r is the equivalent radius oi a rigid ellipsoidal macromolecule;
a, b are the major and minor semiaxis respectively of an ellipsoid of resolution;
Vxs Vys Vg are the velocity components in the Cartesian system of coordinates x, y, z;
Wy, W are the components of the angular velocity of the ellipsoid axis in the spherical system of
coordinates v, ¢, 63
D, ‘ is the coefficient of rotational diffusivity;
fyp is the coefficient of rotational friction;
@ is the vector of angular velocity;
() is the symbol of averaging with distribution function;
o is the dynamic viscosity of solvent; ‘
3 is the volume concentration of suspended particles;
Qg O :)’ a g’
Bos Bos 33 are the functions governed by a and b, according to Jeffery's theory;
v is the macromolecule volume;
Vxi, VXo are the functional values of the dielectric susceptibility in the direction of the axis of ro-
tation and in the direction normal to it respectively;
q is the magnitude of constant dipole moment along the symmetry axis;
hy is the total time derivative of nj;
@ is the angle between X axis and the projection of n; on plane XY;
6 is the angle between Z and nj;
E; is the electric field intensity.
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